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Role of elasticity in elastic–plastic fracture.
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Abstract

A solution for Model-I plane strain crack tip fields in a bi-linear elastic–plastic material is presented. The elastic–

plastic Poisson’s ratio is introduced to characterize the influence of elastic deformation on the near tip constraint.

Attention is focused on the distribution of elastic/plastic strain energy in the sensitive region of the forward sector ahead

of a crack tip. The present study shows that the elastic strain energy can be higher than the plastic strain energy in this

sensitive sector while large amount of the plastic strain energy develops outside this sector around the crack tip. The

effect of elastic deformation in this sensitive region on the structure of crack-tip fields is considerable and the

assumption in some important solutions for crack-tip fields reported in literature that the elastic deformation is small

and can be ignored is therefore not physically reasonable. Besides, finite element analysis is carried out to validate the

analytical solution and good agreement between them is found. It is seen that the present solution with T -stress can
properly describe the crack-tip fields under various constraints for different specimens and an analytical relation is

established between the critical value of J -integral, Jc, and T -stress for elastic–plastic fracture.

� 2004 Elsevier Ltd. All rights reserved.

Keywords: Crack-tip field; Elastic–plastic fracture; Elastic effect
1. Introduction

Solutions for crack-tip fields are important in understanding the mechanisms of crack initiation and
propagation in elastic–plastic materials. It is a milestone in the development of elastic–plastic fracture

mechanics that the well-known HRR singularity (Hutchinson, 1968a; Rice and Rosengren, 1968) was

published and the J -integral fracture criterion was established based on this solution. However, some

limitations or flaws were found in the HRR solution and J -integral criteria. Many works based on finite

element method (FEM) demonstrated that the crack-tip fields for different specimen geometries are not in

line with HRR solution (McMeeking, 1977; McMeeking and Parks, 1979; Shih and German, 1981;
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Hutchinson, 1983; Shih, 1985, etc.). Meanwhile, some experimental results showed that the critical value of

J -integral, which was deemed to be a material constant, is dependent on the specimen geometry (Begly and

Lands, 1972; Hancock and Cowling, 1980). Therefore, many studies were contributed to modify the HRR

solution to achieve physically reasonable fracture criteria.
There is a general agreement that the effect of elasticity on elastic–plastic crack-tip fields is relatively

small as compared with that of plasticity and therefore can be omitted. However, many studies showed that

this elastic effect cannot be simply ignored and more studies are needed. These important results on this

topic are subsequently reviewed in details to address the role of elastic strain energy. The constitutive

equation of plastic deformation theory is
eij
e0

¼ ð1þ mÞ Sij
r0

þ 1� 2m
3

rkk

r0

dij þ
3

2
a

re

r0

� �n�1 Sij
r0

: ð1Þ
In Eq. (1), the strain components eij are related to the deviation stress components Sij of stress tensor rij,

Sij ¼ rij � rmdij. The mean stress is expressed as rm ¼ ðrr þ rh þ rzÞ=3 with out-plane stress component rz

and in-plane stresses rr; rh under plane strain condition (see Fig. 1). As usual, E and m are the Young’s

modulus and Poisson’s ratio, and r0 denotes the initial yield stress and e0 ¼ r0=E is the corresponding

strain, respectively. The stress components are related to a stress function /ðr; hÞ in the form of
rr ¼ r�1/0 þ r�2€/; rh ¼ /00; rrh ¼ �ðr�1 _/Þ0; ð2Þ

where ðÞ0 and (_) denote the derivatives of /ðr; hÞ with respect to the near tip coordinates r; h respectively, see

Fig. 1.

In addition, the compatibility equation is
r�1ðrehÞ00 þ r�1er � r�1€er � 2r�2ðerhÞ0 ¼ 0: ð3Þ
Generally, the stress function is assumed in a separable form and the higher order asymptotic form of

/ðr; hÞ is in the form of
/ðr; hÞ ¼ K1rs1þ2~/1ðhÞ þ K2rs2þ2~/2ðhÞ þ � � � ð4Þ

with K1, K2, S1, and S2 as unknown constants to be determined by boundary conditions. With the help of

Eqs. (1)–(4), the higher-order-term solutions were obtained (Li and Wang, 1986; Xia et al., 1993), but the

effective stress re in their solutions was in the form of
re ¼ ð3=4Þ � ðrr

h
� rhÞ2 þ 3r2

rh

i1
2

: ð5Þ
However, the definition of effective stress re is,
re ¼ ð1=
ffiffiffi
2

p
Þ � ðrr

h
� rhÞ2 þ ðrh � rzÞ2 þ ðrz � rrÞ2 þ 6r2

rh

i1
2

: ð6Þ
It is noted that Eq. (5) is derived from Eq. (6) under the full plastic assumption of rz ¼ 0:5ðrr þ rhÞ. For
plane strain problems (ez ¼ 0), Eq. (1) gives
x

y r

θ

Fig. 1. Crack-tip coordinate system.
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rz=ðrr þ rhÞ ¼ mep ¼ f ðm;E; a; r0; re=r0Þ: ð7Þ
Eq. (7) describes the dependence between rz and re, and gives the definition of mep, which is referred as the

elastic–plastic Poisson’s ratio in this paper. From Eqs. (6) and (7), it is seen that rz and re are dependent on

each other. Because of this dependence, re cannot be independently expressed by the in-plan stress com-

ponents, and thus solving the crack-tip asymptotic fields cannot be carried on. This problem was fixed by
assuming mep to be 0.5 (Li and Wang, 1986; Xia et al., 1993). However, the assumption of rz ¼ 0:5ðrr þ rhÞ
holds true only when the ratio of plastic to elastic deformation is infinite, i.e. ep=ee ! 1, and in real elastic–

plastic problems, the value of rz=ðrr þ rhÞ changes from m to 0.5 (Guo, 1993). The change of mep has a

considerable effect on the stress/stain fields in the sensitive region ahead of a crack tip. Therefore, further

studies on this subject are expected.

Many multi-term solutions were studied (O’Dowd and Shih, 1991a,b; Sharma and Aravas, 1991; Xia et

al., 1993; Yang et al., 1993, etc.). Some of these studies reported that only the third or higher order terms of

the solutions were affected by elastic deformation and therefore the effect of elasticity could be omitted. For
example, in the solution presented by Sharma and Aravas (1991), the strain function was expressed as
eðr; hÞ=ae0 ¼ rsneð0ÞðhÞ þ rsðn�1Þþteð1ÞðhÞ þ rseeð0ÞðhÞ þ � � � ; ð8Þ
where s, t is the power of stress function and s > t; n is the hardening exponent. The first two terms rep-

resents the plastic strain where s ¼ �1=ðnþ 1Þ and t < ðn� 2Þ=ðnþ 1Þ. The third term represents the elastic

strain. Therefore, it was concluded that the effects of elasticity enter the solution in the higher order terms of

the asymptotic solutions. However, the above result was derived by comparing only the powers of the radial

coordinate r without considering the angular coordinate h. The typical angular distribution of the plastic

strains ~epðhÞ around a crack reported by Hutchinson (1968b) showed that epðhÞ approaches zero as h ! 0�.
The fact is that rsn, rsðn�1Þþt > rs as r ! 0, but both eð0ÞðhÞ and eð1ÞðhÞ of Eq. (8) approach zero while eeð0ÞðhÞ
approach a finite value as h ! 0� (see Tian and Wen, 2001). Therefore, it cannot be concluded that the third
elastic term is always less than the first two plastic terms on the ligament. In other words, whether the first

two plastic terms are the dominant ones depends on the other coordinate h. This problem is also related to

the assumption of the separable stress function of the common asymptotic analysis. Yang et al. (1993) also

obtained multi-term solutions. In the common asymptotic analysis for a series expansion of r, as r ap-

proaches zero, the coefficients of each term of different order of r was taken to be zero. The equation of
~rð1Þ
zz ¼ ~rð1Þ

m ¼ 0:5ð~rð1Þ
r þ ~rð1Þ

h Þ of the first term was obtained for plane strain problems (ez ¼ 0). This equation

is just the incompressible one and so the first term is still the HRR singularity. The incompressible or full

plastic result is related to the assumption that stress function is separable in r and h, which is a far more
complicated problem and needs further study.

Sharma and Aravas (1991) also remarked that the dominant region of the two-term stress ahead of the

crack is smaller than that in the angular region 60� < h < 180�, which raises the question as to whether the

two-term expansion can provide an accurate description of the stress field in the region ahead of a crack.

Therefore, it is expected to get the more reasonable crack tip fields in the region 0� < h < 60� where the

fracture process takes place.

An alternative approach of solving the crack-tip fields in a bi-linear elastic–plastic material was pre-

sented by Yang and Chao (1992) as well as Chao and Yang (1992) in which the constitutive relation was
eij ¼
1þ m
E

Sij þ
1� 2m
3E

rkkdij þ
3

2

1

Ep

�
� 1

E

�
ð1� �r�1

e ÞSij: ð9Þ
They still employed the assumption of �re ¼ re=r0 ! 1 and so the factor of ð1� �r�1
e Þ in Eq. (9) vanished.

This implies that the ratio of plastic to elastic deformation is infinite, i.e. ep=ee ! 1. The present study
shows that the values of the normalized equivalent stress re=r0 ahead of a crack tip are not very large and
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the near-tip field is very sensitive to the values of re=r0. Therefore, the assumption of �re ¼ re=r0 ! 1 is

not reasonable.

The full plastic models are consciously or unconsciously employed in the analysis of elastic–plastic

fracture as reviewed above. However, the negligence of the above-mentioned elastic effect can be one of the
considerable reasons responsible for the invalidation of the J -integral based criterion. Little studies of

elastic effects on elastic–plastic fracture processes have been reported although many multi-term solutions

were obtained. The current study presents an alternative attempt to consider the elastic effect. Some merits

of the elastic–plastic Poisson’s ratio mep are discussed for plane-strain problems. The patterns of near-tip

energy distributions under different constraints are presented. The present study provides a new insight into

the role of elasticity in elastic–plastic fracture.
2. An analogy solution for elastic–plastic near-tip fields

2.1. The analogy between elastic–plastic and linear elastic problems

To investigate elastic–plastic near-tip fields, an analogy analysis is presented in this section. For the sake

of usefulness, the basic equations of linear elastic crack-tip field are transcribed here. The sum of the first
two terms of the right-hand side of Eq. (1) or Eq. (9) is elastic stress–strain relation is
eij ¼
1þ m
E

Sij þ
1� 2m
3E

rkkdij: ð10Þ
The compatibility equation is Eq. (3) and the linear crack-tip field was obtained by Williams (1957). The
integral J is related to the stress intensity factor KI as J ¼ ð1� m2ÞK2

I =E since ez ¼ 0, rz ¼ mðrr þ rhÞ for

mode-I plane strain crack. The linear elastic crack-tip stress field can be written in form of
rr rrh

rhr rh

� �
¼ EJ

2pð1� m2Þr

� �1
2 ~rr ~rrh

~rhr ~rh

� �
þ cos2 h � sin h cos h

� sin h cos h sin2 h

� �
T : ð11aÞ
The second term of the right-hand side of Eq. (11a) denotes the so-called T -stress. It has a finite or bounded

value and can be regarded as the stress acting parallel to the crack flanks (Rice, 1974). In addition, the

h-variations were
~rrðhÞ ¼
1

4
5 cos

h
2
� cos

3

2
h

� �
;

~rhðhÞ ¼
1

4
3 cos

h
2
þ cos

3

2
h

� �
;

~rrhðhÞ ¼
1

4
sin

h
2
þ sin

3

2
h

� �
:

8>>>>>><
>>>>>>:

ð11bÞ
To demonstrate the analogy method, the bi-linear elastic–plastic model is studied. Fig. 2 shows the uniaxial

stress–strain relation where Ep is the tangent modulus of elastic–plastic stress–strain curve (i.e., the less
Fig. 2. Elastic–plastic stress–strain relation.
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steep line as r > r0) and r0 is the initial yield stress. In the multi-axial stress state, it is in the form of Eq. (9)

and can be rewritten as
eij ¼
1þ m þ k

E
Sij þ

1� 2m
3E

rkkdij ð12aÞ
with
k ¼ 3

2

E
Ep

�
� 1

�
ð1� �r�1

e Þ: ð12bÞ
By introducing two elastic–plastic parameters mep, Eep defined as
1þ mep
Eep

¼ 1þ m þ k
E

;
1� 2mep
3Eep

¼ 1� 2m
3E

; ð13Þ
we rearrange Eq. (12a) as
eij ¼
1þ mep
Eep

Sij þ
1� 2mep
3Eep

rkkdij: ð14Þ
It is clearly seen that the form of Eq. (14) is the same as that of Eq. (10), but the two elastic constants E and

m in Eq. (10) are replaced by the two elastic–plastic variables Eep and mep in Eq. (14). These two parameters
are defined by Eq. (13) and they are the requirements of the analogy between the elastic model and elastic–

plastic model. On the basis of Eqs. (12b) and (13), we obtain the following expressions,
Eep ¼
E

1þ 2k=3
¼ E

1þ ðnp � 1Þð1� �r�1
e Þ ; ð15Þ

mep ¼
m þ k=3
1þ 2k=3

¼ m þ ðnp � 1Þð1� �r�1
e Þ=2

1þ ðnp � 1Þð1� �r�1
e Þ ð16Þ
with np ¼ E=Ep for short. In addition, the following equations are hold,
k ¼ 3ðmep � mÞ=ð1� 2mepÞ
Eep ¼ E � ð1� 2mepÞ=ð1� 2mÞ

�
: ð17Þ
Because of the important role in elastic–plastic crack-tip fields to be demonstrated in the following sections,

mep is known as elastic–plastic Poisson’s ratio.

2.2. The role of mep in elastic–plastic plane strain problems

Under the plane strain condition (ez ¼ 0), Eq. (14) leads to
mep ¼ rz=ðrr þ rhÞ: ð18Þ

Obviously, mep coincides with the constraint parameter rz=ðrr þ rhÞ under the plane strain condition. It is

noted that mep was introduced and defined by Eq. (13). From Eq. (16), we obtain
mep ¼ m; as �re ¼ re=r0 ¼ 1:0; ð19aÞ

mep ! mmax ¼
1

np
m

�
þ 1

2
ðnp � 1Þ

�
; as �re ¼ re=r0 ! 1: ð19bÞ
Therefore, mep is in the range of m6 mep < mmax. It is clear that mep depends not only on materials constants m
and np, but also on the normalized effective stress �re ¼ re=r0, which is a measure of the degree of plastic

deformation level.



Fig. 3. The elastic–plastic Poisson’s ratio to effective stress for plane strain problems.
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Fig. 3 shows the dependence of mep on re=r0 as expressed by Eq. (16) for the cases of m ¼ 0:3, np ¼ E=
Ep ¼ 5, 20 where the dash lines denote the values of mmax. It can be seen that the assumption of mep ¼ 0:5
means both re=r0 and E=Ep approach to infinite. It will be seen in the following sections that the change of
mep or �re ¼ re=r0 induces a great change of the near-tip fields, especially the near-tip energy distribution.
2.3. Solution procedure of elastic–plastic crack tip fields

On the basis of the analogy between Eqs. (10) and (14), replacing m and E in Eq. (11a) with mep and Eep

gives
rr rrh

rhr rh

� �
¼ EepJ

2pð1� m2epÞr

" #1
2

~rr ~rrh

~rhr ~rh

� �
þ cos2 h � sin h cos h

� sin h cos h sin2 h

� �
T : ð20aÞ
With the help of Eq. (17) and r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Er0e0

p
, Eq. (20a) can be written as
rr rrh

rhr rh

� �
r0

,
¼ ð1� 2mepÞ

2pð1� m2epÞð1� 2mÞe0
1

rr0=J

� �" #1
2

~rr ~rrh

~rhr ~rh

� �

þ cos2 h � sin h cos h
� sin h cos h sin2 h

� �
T
r0

: ð20bÞ
Apparently, the elastic–plastic crack-tip field was analogically obtained. Unfortunately, Eq. (20b) is not the

final elastic–plastic solution, because mep and Eep are not material constants but dependent on the stress

components in elastic–plastic cases. This implies that the compatibility equation cannot be exactly satisfied.

However, Eq. (20b) provides an effective way to solve the elastic–plastic fields. Although mep changes from
one point to another in the elastic–plastic fields, it has a certain value at a given point with the dimen-

sionless coordinate ðrr0=J ; hÞ. For a given point ðrr0=J ; hÞ, the value of mep at this point can be determined

by an iteration procedure. By substituting Eq. (20b) into the expression (6) of the effective stress re, we

obtain a mep � re relation at the given point. Bearing in mind, we already have another mep � re relation of
Eq. (16) illustrated in Fig. 3 and it can be rewritten as
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reðnp; mepÞ
r0

¼ ðnp � 1Þð0:5� mepÞ
ðnp � 1Þð0:5� mepÞ þ m � mep

: ð21Þ
The combination of these two mep � re relations determines the value of mep at the given point. In other

words, the two relations can be illustrated as two curves, and the value of mep at the intersecting point of
these two curves is the real value of mep at the given point ðrr0=J ; hÞ. As the above-mentioned procedure is

carried out repeatedly from one point to another, the values of mep are determined at all points around the

crack-tip. With the determined value of mep at a given point, the stress components at the given point are

given by Eq. (20b). Consequently, the elastic–plastic solutions for crack-tip fields are obtained. Some

solutions for specific cases of consideration are discussed in the following sections.
3. Stress and strain crack-tip fields

3.1. Stress and strain distributions under high constraint of T=r0 ¼ 0

When T ¼ T=r0 ¼ 0, the second term of Eq. (20b) vanishes, and the effective stress is obtained by

substituting Eq. (18), and the first term (the so-called high constraint crack tip field) of Eq. (20b) into (6),

namely,
reðrr0=J ; h; mepÞ
r0

¼ ð1� 2mepÞ
2pð1� m2epÞð1� 2mÞe0

� 1

rr0=J

� �" #1
2

ð1
�

� 2mepÞ2 þ 3 sin2 h
2

�1
2

cos
h
2
: ð22Þ
By using the above-mentioned procedure, the value of mep can be determined by Eqs. (21) and (22). The

values of mep at some points of interest are determined, including points at rr0=J ¼ 2; 5 and

h ¼ 0�; 10�; . . . ; 180� (angular distribution) as well as points at h ¼ 0�, rr0=J ¼ 1:0; 1:5; . . . ; 6:0 (ligament

distribution, see Section 3.2). The results for two different materials (m ¼ 0:3, e0 ¼ 0:002, np ¼ E=Ep ¼ 5, 20)

are showed in Fig. 4.
Fig. 4. Angular distribution of elastic–plastic Poisson’s ratio for T=r0 ¼ 0, E=Ep ¼ 5, 20.
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It is found that the value of mep in the forward sector (jhj < 30�, 1 < rr0=J < 5) is obviously smaller than

0.5, it is noted that rz=ðrr þ rhÞ ¼ 0:5 in the HRR solution.

The stress components at each point ðrr0=J ; hÞ can be obtained by substituting mep at the point into Eq.

(20b) with T ¼ T=r0 ¼ 0. With the help of Eqs. (9), (12) and (17), the elastic and plastic strain components
are expressed as
eeij ¼
1þ m
E

Sij þ
1� 2m
3E

rkkdij; ð23aÞ

epij ¼
k
E
Sij ¼

3ðmep � mÞ
1� 2mep

Sij
E
: ð23bÞ
With Eq. (18) and rkk ¼ 3rm ¼ ð1þ mepÞðrr þ rhÞ, substituting Eq. (20b) with T ¼ T=r0 ¼ 0 into Eqs. (23a)
and (23b) leads to
�eij ¼
eij
e0

¼ ð1� 2mepÞ
2pð1� m2epÞð1� 2mÞe0

� 1

rr0=J

� �" #1
2

~eijðhÞ ð24aÞ
with the functions of ~eijðhÞ for total strain, and ~eeijðhÞ, ~e
p
ijðhÞ for elastic, plastic strain,
~eerðhÞ ¼
1þ m
4

5 cos
h
2
� cos

3

2
h

� �
� 2mð1þ mepÞ cos

h
2
;

~eehðhÞ ¼
1þ m
4

3 cos
h
2
þ cos

3

2
h

� �
� 2mð1þ mepÞ cos

h
2
;

~eerhðhÞ ¼
1þ m
4

sin
h
2
þ sin

3

2
h

� �
:

8>>>>>><
>>>>>>:

ð24bÞ
and
~epr ðhÞ ¼
3ðmep � mÞ
1� 2mep

1

4
5 cos

h
2
� cos

3

2
h

� �
� 2

3
ð1þ mepÞ cos

h
2

� �
;

~ephðhÞ ¼
3ðmep � mÞ
1� 2mep

1

4
3 cos

h
2
þ cos

3

2
h

� �
� 2

3
ð1þ mepÞ cos

h
2

� �
;

~eprhðhÞ ¼
3ðmep � mÞ
ð1� 2mepÞ

� 1
4
� sin

h
2
þ sin

3

2
h

� �
:

8>>>>>>><
>>>>>>>:

ð24cÞ
The strain components for two different materials (m ¼ 0:3, e0 ¼ 0:002, E=Ep ¼ 5, 20) are determined. The

angular distribution of elastic strain eeij and total strain eij at rr0=J ¼ 2 are showed in Fig. 5. It is clearly seen

that the elastic strain is nearly the dominant term in the forward sector (jhj < 30�). It is noted that the

strains on the ligament in the HRR solution are zero (see Hutchinson, 1968b).

3.2. Elastic–plastic Poisson’s ratio for various T -stress values

The distribution of the elastic–plastic Poisson’s ratio on the ligament for various values of T -stress
(different constrains) is of interest in this section. On the ligament (h ¼ 0�), Eq. (20b) leads to
rr rrh

rhr rh

� �
r0

,
¼ ð1� 2mepÞ

2pð1� m2epÞð1� 2mÞe0
� 1

rr0=J

� �" #1
2

1 0

0 1

� �
þ T 0

0 0

� �
: ð25Þ
Under the plane strain condition, with Eq. (18), substituting (25) into (6) gives
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�re ¼ re=r0 ¼ ð1
h

� mep þ m2epÞT
2 þ ð1� 2mepÞ2T �rh þ ð1� 2mepÞ2�r2

h

i1
2 ð26aÞ
with �rh as
�rh ¼
ð1� 2mepÞ

2pð1� m2epÞð1� 2mÞe0
� 1

rr0=J

� �" #1
2

: ð26bÞ
Similarly, Eqs. (21) and (26) leads to
ð1
h

� mep þ m2epÞT
2 þ ð1� 2mepÞ2T �rh þ ð1� 2mepÞ2�r2

h

i1
2 ¼ ðnp � 1Þð0:5� mepÞ

ðnp � 1Þð0:5� mepÞ þ m � mep
: ð27aÞ
Substituting (26b) into (27a) gives the dependence of mep on T ¼ T=r0. It can be expressed as
mep ¼ mepðT=r0; rr0=J ; m; e0; npÞ: ð27bÞ
For example, two hardening materials with m ¼ 0:3, np ¼ E=Ep ¼ 5, e0 ¼ r0=E ¼ 0:002, and m ¼ 0:3,
np ¼ E=Ep ¼ 20, e0 ¼ r0=E ¼ 0:0028 are discussed. The later is similar to HY80 steel (n ¼ 9 for power

hardening material, E ¼ 200 MPa, r0 ¼ 560 MPa, m ¼ 0:3, from Hancock and Cowling, 1980). Based on

these material data, the relation mep ¼ mepðT=r0; rr0=J ; m; e0; npÞ is obtained by using Eqs. (27a) and (26b).

The ligament distributions of mep for different values of T -stress are plotted in Fig. 6.

It is clearly seen that the all values of mep are lower than 0.5 and increase as the ‘‘constraint’’ decreases. In

addition, it is noted that the value of rm=re depends on the value of mep, and it is generally overestimated by

assuming mep ¼ 0:5. As a constraint parameter, mep is directly in the expressions of the crack tip field in
bi-linear materials, and can directly represent the ratio of elastic to plastic deformation.



Fig. 6. Ligament distribution of elastic–plastic Poisson’s ratio of different T -stress values for E=Ep ¼ 5, 20.
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4. Crack-tip energy fields in bi-linear materials

4.1. The energy distributions for high constraints of T=r0 ¼ 0

Since the elastic–plastic strain energy fields is significantly important in terms of the construction of a
physically reasonable failure criterion, we discuss the case under high constraint (T ¼ T=r0 ¼ 0) in this

section. With the elastic, plastic strain eeij, e
p
ij of Eq. (23a) and (23b), the densities of elastic and plastic strain

energy can be deduced by the definition
we ¼
Z

rijdeeij ¼
1þ m
3E

r2
e þ

3ð1� 2mÞ
2E

r2
m; ð28aÞ
wp ¼
Z

rijdepij ¼
k
3E

r2
e ¼

mep � m
1� 2mep

r2
e

E
: ð28bÞ
The stresses of singularity term (or the high constraint fields) are determined by (20b) with T ¼ T=r0 ¼ 0.

With the help of Eq. (18), by substituting the stresses into (28), we obtain the energy densities as
we

r0e0
;
wp

r0e0

� �
¼ ð1� 2mepÞJ

2pð1� m2epÞð1� 2mÞr0e0r
½~weðhÞ; ~wpðhÞ�; ð29aÞ
where the functions of ~weðhÞ; ~wpðhÞ are in the form of
~weðhÞ ¼
1

3
ð1þ mÞð1� 2mepÞ2 þ 2 � ð1� 2mÞð1þ mepÞ2 þ 3ð1þ mÞ sin2 h

2

� �
cos2

h
2
;

~wpðhÞ ¼
mep � m
1� 2mep

ð1� 2mepÞ2 þ 3 sin2 h
2

� �
cos2

h
2
:

8>><
>>: ð29bÞ
The angular distributions (rr0=J ¼ 2) of the ratio of elastic to total strain energy density we=ðwe þ wpÞ for
two materials given in Section 3.2 are presented in Fig. 7. It is clearly showed that the elastic strain energy is

the dominant term and therefore the omission of elasticity is not physically applicable in the forward sector
(h < 30�).



Fig. 7. Angular distribution of the ratio of elastic to total strain energy density for T=r0 ¼ 0, E=Ep ¼ 5, 20.
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4.2. Elastic and plastic energy distributions for various T -stress values

The ligament (h ¼ 0) field for various values of T=r0 (the different constrains) is the topic of this section.
The energy density can also be deduced by the definition. The combination of Eqs. (18), (25), (26), (28a)

and (28b) leads to the expressions of the elastic energy density we and plastic energy density wp, and they are

written in the following dimensionless form,
�we ¼
1þ m
3

� ð1
h

� mep þ m2epÞT
2 þ ð1� 2mepÞ2T �rh þ ð1� 2mepÞ2�r2

h

i
þ 3ð1� 2mÞ

2
� 1

3
� ð1

�
þ mepÞ � ð2�rh þ T Þ

�2
;

ð30aÞ
�wp ¼
mep � m
1� 2mep

� ð1
h

� mep þ m2epÞT
2 þ ð1� 2mepÞ2T �rh þ ð1� 2mepÞ2�r2

h

i
: ð30bÞ
By substituting mep (Fig. 6 or Eq. (27)) into Eqs. (30a) and (30b), the energy distributions can be calculated.

The ligament distributions of the elastic and plastic strain energy densities of various values of T=r0 for

E=Ep ¼ 5, 20 are plotted in Figs. 8 and 9. It is seen that wp values of E=Ep ¼ 5 keeps very low, while the wp

curves of E=Ep ¼ 20 increase sharply after T=r0 reaches value about T=r0 ¼ �1:0, which is accompanied
with decreasing of elastic energy density we. Again, it is not acceptable ignoring the elastic effects on the

ligament. Together with Fig. 7, it is clearly shows that the elastic strain energy is the dominant term in the

forward sector (jhj < 30�) in the annulus of 1 < rr0=J < 6 around a crack tip while the plastic strain energy

is dominant term in the area out of the forward sector.

4.3. Total energy distributions for various T -stress values

The distribution of total strain energy density on the ligament is useful in aiding the understanding of
fracture processes. The sum of Eqs. (30a) and (30b) gives the dimensionless form of total strain energy

density, and it can be simplified as



Fig. 9. Ligament distribution of elastic, plastic energy density of different T -stress values for E=Ep ¼ 20.

Fig. 8. Ligament distribution of elastic, plastic energy density of different T -stress values for E=Ep ¼ 5.
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�wep ¼ ð�wepÞI þ ð�wepÞII ð31aÞ
with ð�wepÞI and ð�wepÞII as
ð�wepÞI ¼
ð1� 2mepÞJ

2pð1� mepÞr0e0r
; ð31bÞ
ð�wepÞII ¼
ð1þ mepÞð1� 2mÞð1� 2mepÞJ

2pð1� mepÞr0e0r

� �1
2

T þ
ð1� 2mÞð1� m2epÞ

2ð1� 2mepÞ
T

2
: ð31cÞ
Substituting mep ¼ mepðT=r0; rr0=J ; m; e0; npÞ for E=Ep ¼ 20 (Fig. 6) into (31b) and (31c) gives the distribution

of ð�wepÞI, ð�wepÞII as shown in Fig. 10 where the energy terms are plotted again the positions on ligament
under various constraints.



IIII

Fig. 10. Ligament distribution of total energy density of different T -stress values for E=Ep ¼ 20.
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It is found that ð�wepÞI decreases but ð�wepÞII increases as the T=r0 decrease. In addition, ð�wepÞII keeps a
very low value until T=r0 reach a certain value (about T=r0 ¼ �1:0), then it increases sharply when

T=r0 < �1:0. It should be noted that ð�wepÞII can becomes negative as T=r0 > �1:0, but the total energy is

always positive. It is also seen that a factor of 1=ð1� 2mepÞ is included in Eqs. (31c) and (30b). Therefore,

ð�wepÞII and wp increase rapidly as mep ! 0:5. This phenomenon can also be found from Fig. 6 compared with

Figs. 9 and 10.
5. Finite element analysis

For the validation and application of the bi-linear crack-tip fields presented above, this section examines

the same crack-tip fields by using finite element method (FEM). Analyses on the elastic–plastic energy

distributions around a crack are addressed again numerically. And the materials data used here are the
same as the analytical analysis above.

As shown in Fig. 11, two kinds of typical specimens, three-point bend bar (TPB) and centre-cracked

panel (CCP) are studied. The ratio of the crack length over the specimen width, a=W , is taken as a=W ¼ 0:5
in the above-mentioned two cases.

Fig. 12 illustrates the finite element meshes, where the region near the crack-tip is modelled with refined

meshes, and the radial length of the element close to crack tip is 0.001 of the ligament size. In this FEM

analysis, ANSYS Version 5.6.2 (ANSYS 5.6.2, 2000) is employed, the element type is chosen as eight-node

iso-parameter element. About 500 increments are applied to cover the range from small-scale yielding to the
deep yielding.
Fig. 11. Two typical specimens for FEM analyses.



Fig. 12. Finite element mesh.
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5.1. Distributions of elastic–plastic Poisson’s ratio mep around crack tip

The angular distributions at rr0=J ¼ 2 of mep of high constraint specimen (TPB) for E=Ep ¼ 5, 20 and the

ligament distributions of mep of the two typical specimens (TPB and CCP) for E=Ep ¼ 20 are presented in

Fig. 13.

From the analytical results of Figs. 4 and 6 as well as the FEM results of Fig. 13, it is showed that the

curves of FEM results of TPB are similar to those of the bi-linear field of T ¼ 0. From high to low con-

straints, the FEM results of two typical specimens are similar to those given by the bi-linear field from high

T -stress values to low. Both of them shows that mep is considerably lower than 0.5 in the forward sector
jhj < 30�.

Figs. 4, 6 and 13 also show that the mep values change from 0.35 to 0.48 in the range of 1 < rr0=J < 6 on

the ligament. The values of re=r0 in this range is not very large (generally less than 3.0, see Fig. 3), and mep is
very sensitive to re=r0 in this range as showed in Fig. 3. Therefore, both assumptions of �re ¼ re=r0 ! 1
and rz=ðrr þ rhÞ ¼ 0:5 employed in literature reviewed previously are not applicable.
5.2. Energy distribution around crack tip

The angular distributions (rr0=J ¼ 2) of the ratio of elastic to total energy density obtained by FEM

analyses of E=Ep ¼ 5, 20 for high constraint specimen (TPB) are illustrated in Fig. 14. The ligament
Fig. 13. Distribution of elastic–plastic Poisson’s ratio around a crack tip. (a) Angular distribution for E=Ep ¼ 5, 20 and (a) ligament

distribution for E=Ep ¼ 20.



Fig. 15. Ligament distribution of elastic, plastic energy density for E=Ep ¼ 20.

Fig. 14. Angular distribution of the ratio of elastic to total strain energy density.
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distributions of the elastic, plastic strain energy densities given by the FEM analyses of E=Ep ¼ 20 for the

two typical specimens are presented in Fig. 15.

As compared with the analytical results presented in Figs. 7 and 9 in Section 4, it is seen that the

considerable elastic energy develops on the ligament while little plastic deformation occurs for both the
FEM results of TPB specimen and the bi-linear ligament field until T=r0 reaches a certain value (about

T=r0 ¼ �1:0 in Fig. 9). The decrease of the constraint means the decrease of elastic energy density we and

the increase of plastic energy density wp on the ligament.

Again, it is clearly seen that, from high to low constraints, the FEM results of the two typical specimens

are similar to the bi-linear ligament field with the T -stress varying from a high to low values (see Figs. 7 and
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9). Consequently, the FEM results show that the bi-linear elastic–plastic field with various T -stress values
can properly describe different kinds of crack tip fields under various constraints for different specimens.
6. The role of elastic strain energy and fracture criterion

Tian and Wen (2001) reported that the distribution of the energy density is non-uniform in the annulus

of 1 < rr0=J < 6 around a crack tip. The FEM results presented previously for various crack geometries

indicate that the non-uniform distribution of strain energy is a basic feature for all kinds of crack geom-

etries. The high constraint leads to that the high elastic volume energy is accumulated in the forward sector

(0� < h < 30�), while large plastic work occur in the region out of the forward sector. This phenomenon

was also found in the HRR field (Tian and Wen, 2001). Therefore, it is true that the plastic dissipation
dominates the crack-tip zone when the annulus is considered as a whole. The pattern of the non-uniform

distributions of strain energy is dependent on the crack tip constraint, while the constraint is on the

specimen geometry, the hardening exponent, and the load level br0=J . As constrains decreases, the elastic

part in the forward sector decreases while the plastic part increases, but in general they are of same order on

the ligament.

Yang and Chao (1992) reported that the elastic portion J e is 12% of the total J in plane strain conditions.

Furthermore, the fact that Jc depends on the triaxility of rm=re implies that the elastic energy is of

importance to the fracture process. The one-parameter fracture criterion of J -integral is based on the HRR
field, which was derived from the full plastic model of the deformation theory (or non-linear elasticity by

assuming rz=ðrr þ rhÞ ¼ 0:5 and omitting the linear elastic portion). In the HRR field, there is no defor-

mation on the ligament ahead of a crack tip (Tian and Wen, 2001). The one-parameter J -integral criterion
is only related to Jp with no relation to the elastic energy. Particularly, it is not related to the deformation

induced by hydrostatic stress because of the assumption of rz=ðrr þ rhÞ ¼ 0:5. However, the measured J
values from testing specimens include both J e and Jp. As the above-mentioned, the patterns of the non-

uniform energy distributions disappear gradually with the decreasing of the constraint mep. For high con-

straint specimens (such as TPB), as the load increases (i.e., as br0=J decreases) the ratio of elastic to plastic
deformation (i.e. mep) keeps low steady curves (see Fig. 13(b)). Therefore, the ratio of J e to Jp keeps high and

this leads to low testing values of Jc. By contrast, for low constraint specimens (such as CCP), the curves of

mep is high (see Fig. 13(b)) and the ratio of J e to Jp decreases. As a result, it leads to the higher testing values

of Jc. These phenomena imply that fracture will not occur until the elastic energy is accumulated to a critical

value ahead of the crack tip.

By comprising Eqs. (30a), (30b) with (31b), (31c) or Fig. 9 with Fig. 10, the following approximate

relations are found,
ð�wepÞI � �we; ð�wepÞII � �wp: ð32Þ

These approximate relations reveal the physical meanings of the above-mentioned two terms. More

importantly, if the ‘fracture’ is assumed to be mainly related to the release of elastic strain energy (since the

plastic strain energy dissipated and cannot be released), a fracture criterion can be proposed on the basis of

Eq. (31b), that is
ð1� 2mepÞ
ð1� mepÞ

J
� �

C

¼ Const: ð33Þ
Specifically, in linear elastic cases, mep ¼ m and JIc ¼ ð1� m2ÞK2
Ic=E, Eq. (33) becomes
ð1� 2mepÞ
ð1� mepÞ

J
� �

C

¼ ð1� 2mÞ
ð1� mÞ JIc ¼

ð1� 2mÞð1þ mÞ
E

K2
Ic ¼ Const: ð34Þ
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Since E, m and JIc are material constants in linear elastic cases, the critical value of J for elastic–plastic

problem is determined as,
Jc ¼
ð1� mepÞ
ð1� 2mepÞ

� �
C

� ð1� 2mÞ
ð1� mÞ JIc: ð35Þ
For example, in the typical case of rr0=J ¼ 1, combining Eqs. (26b), (27a) and (35) leads to an analytical

relation between Jc and T -stress,
ð1� mep þ m2epÞ T
r0

� �2

þ ð1� 2mepÞ5

2pð1� m2epÞð1� 2mÞe0

" #1
2

T
r0
¼ ðnp � 1Þð0:5� mepÞ

ðnp � 1Þð0:5� mepÞ þ m � mep

� �2
� ð1� 2mepÞ3

2pð1� m2epÞð1� 2mÞe0
;

mep ¼ 1� 2� ð1� 2mÞ
ð1� mÞ

1

ðJc=JIcÞ

� ��1

:

9>>>>=
>>>>;

ð36aÞ

and this relation can be expressed as
Jc=JIc ¼ f ðT=r0; m; e0; npÞ: ð36bÞ
For the case with np ¼ E=Ep ¼ 20, e0 ¼ 0:0028 and m ¼ 0:3 (similar to the materials of Hancock and
Cowling, 1980, see Section 3.2), the relation between Jc and T -stress is plotted in Fig. 16.

From Fig. 16 or Eq. (36), the ratio of Jc for T ¼ �2:0 over that for T ¼ 0 is given as
ðJcÞT¼�2:0=ðJcÞT¼0 ¼ ½ðJcÞT¼�2:0=JIc�=½ðJcÞT¼0=JIc� ¼ 6:50=1:805 ¼ 3:60: ð37Þ
At the same time, the ratio of Jc for CCP over that for TPB is also obtained based on the fracture data of

HY80 steel (Hancock and Cowling, 1980),
ðJcÞTPB=ðJcÞCCP ¼ 580:8=190:4 Mpa ¼ 3:05: ð38Þ
The fact that these two values in Eqs. (37) and (38) are nearly same indicates that the theoretical results is in

good agreement with the test results although it is a rough estimation. It is also noted that the FEM results

of TPB and CCP are similar to those of the bi-linear field of T ¼ 0 and T=r0 ¼ �2:0 respectively as dis-

cussed in Section 5.
Fig. 16. An analytical curve between Jc and T -stress for E=Ep ¼ 20.



Fig. 17. The analytical curves between mep, T and Jc, mep for E=Ep ¼ 20. (a) mep, T relation (b) Jc, mep relation.
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Fig. 16 or Eq. (36) provides a straightforward way to evaluate Jc in term of T -stress for elastic–plastic
fracture. This analytical relation is helpful in fracture experiments. Further careful examination of this

relation by more experimental data for various materials is expected. It is also noted that T -stress as the
second parameter in the linear elastic fracture (Williams, 1957) has been generalized to be used in the

elastic–plastic fracture (Betegon and Hancock, 1991). However, this kind of K � T or J � T approach has

limited application in the elastic–plastic region because it was based on elasticity theory. In the present

study, the relation of Jc and T -stress given by Fig. 16 has no this limitation because it is based on the bi-
linear elastic–plastic ligament field.

Meanwhile, Eq. (36a) gives the dependence of mep on T ¼ T=r0, namely,
mep ¼ mepðT=r0; m; e0; npÞ: ð39Þ
The relation between mep and T -stress for the same materials is shown in Fig. 17(a).

The relation between Jc and mep given by Eq. (35) is shown in Fig. 17(b) where two extreme cases of most

interest are given. The first is the linear elastic case in which mep ¼ m and Jc ¼ J1c ¼ ð1� m2ÞK2
Ic=E. In elastic–

plastic cases, the Jc depends not only on these two elastic material constants J1c, m, but also the elastic–
plastic Poisson’s ratio mep ahead of crack tip. The more the plastic deformation takes place near the crack

tip, the larger the factor of 1=ð1� 2mepÞ is, and therefore the larger the value of Jc is. The second extreme

case is the full plastic problem in which rz=ðrr þ rhÞ ¼ mep ! 0:5 and Jc=JIc ! 1, which implies that the

failure criterion may be established by classical strength theory rather than fracture theory.
7. Summary and conclusion remarks

The present analysis is limited to the annulus of 1 < rr0=J < 6, in which it is assumed that there is no

microcrack phenomenon and no plastic volume deformation. And the J2-deformation plasticity theory with

bi-linear hardening is used to describe the constitutive behaviour of the material.

A Model-I elastic–plastic crack-tip field is obtained by introducing a new constraint variable of mep, and
its physical significance for plane strain elastic–plastic problems is addressed. An analogy scheme for

determining the crack-tip fields is proposed. The scheme has been proved to be good approximations al-

though the compatibility equation is not exactly satisfied. We managed to avoid using the separable stress
function of the common asymptotic method and to avoid adding the higher-order terms into the solution.
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The near-tip elastic–plastic energy distributions are studied with an emphasis on the elasticity in the

sensitive region ahead of the crack. Attention is focused on two special cases: one is the first term of

T=r0 ¼ 0 for high constraint crack-tip field and the other is the ligament field of different T -stress values for
different constrains. It is concluded that the elastic energy cannot be omitted, although the elastic energy is
smaller than plastic dissipation when crack tip is taken as a whole.

By comparing the bi-linear fields with the results of detailed finite element analyses, the near-tip stress

field as well as the energy field are validated. The FEM analyses indicate that the bi-linear field is physically

reasonable and the bi-linear ligament field in terms of T -stress can describe different kinds of crack tip fields

under different constraints for different type of specimens. Both the analytical analyses and the FEM results

show that the full plastic assumptions of �re ¼ re=r0 ! 1 or rz=ðrr þ rhÞ ¼ 0:5 are not applicable in the

region ahead of the crack tip.

An analytical relation between Jc and T -stress for elastic–plastic fracture is established, which is found in
good agreement with the test results contributed by Hancock and Cowling (1980). This supports the point

that elastic energy in the sensitive region ahead of crack is of importance in fracture process. The analysis of

the near-tip strain energy distribution and the constraint condition provides useful insight into the structure

of crack-tip fields and is helpful in understanding the ductile fracture process as well as in constructing

reasonable failure criteria.
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