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Abstract

A solution for Model-I plane strain crack tip fields in a bi-linear elastic—plastic material is presented. The elastic—
plastic Poisson’s ratio is introduced to characterize the influence of elastic deformation on the near tip constraint.
Attention is focused on the distribution of elastic/plastic strain energy in the sensitive region of the forward sector ahead
of a crack tip. The present study shows that the elastic strain energy can be higher than the plastic strain energy in this
sensitive sector while large amount of the plastic strain energy develops outside this sector around the crack tip. The
effect of elastic deformation in this sensitive region on the structure of crack-tip fields is considerable and the
assumption in some important solutions for crack-tip fields reported in literature that the elastic deformation is small
and can be ignored is therefore not physically reasonable. Besides, finite element analysis is carried out to validate the
analytical solution and good agreement between them is found. It is seen that the present solution with T-stress can
properly describe the crack-tip fields under various constraints for different specimens and an analytical relation is
established between the critical value of J-integral, J., and T-stress for elastic—plastic fracture.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Solutions for crack-tip fields are important in understanding the mechanisms of crack initiation and
propagation in elastic—plastic materials. It is a milestone in the development of elastic—plastic fracture
mechanics that the well-known HRR singularity (Hutchinson, 1968a; Rice and Rosengren, 1968) was
published and the J-integral fracture criterion was established based on this solution. However, some
limitations or flaws were found in the HRR solution and J-integral criteria. Many works based on finite
element method (FEM) demonstrated that the crack-tip fields for different specimen geometries are not in
line with HRR solution (McMeeking, 1977; McMeeking and Parks, 1979; Shih and German, 1981;
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Hutchinson, 1983; Shih, 1985, etc.). Meanwhile, some experimental results showed that the critical value of
J-integral, which was deemed to be a material constant, is dependent on the specimen geometry (Begly and
Lands, 1972; Hancock and Cowling, 1980). Therefore, many studies were contributed to modify the HRR
solution to achieve physically reasonable fracture criteria.

There is a general agreement that the effect of elasticity on elastic—plastic crack-tip fields is relatively
small as compared with that of plasticity and therefore can be omitted. However, many studies showed that
this elastic effect cannot be simply ignored and more studies are needed. These important results on this
topic are subsequently reviewed in details to address the role of elastic strain energy. The constitutive
equation of plastic deformation theory is
Sy 1—2v oy 3a<ae)”‘ls,,

80_(1+V)60+ 3 (o) 5U+2 () Go. (1)

In Eq. (1), the strain components ¢;; are related to the deviation stress components S;; of stress tensor oy,
S;j = 0;; — om0;;. The mean stress is expressed as g, = (0, + 0y + 0.)/3 with out-plane stress component g,
and in-plane stresses ., 0y under plane strain condition (see Fig. 1). As usual, £ and v are the Young’s
modulus and Poisson’s ratio, and oy denotes the initial yield stress and ¢ = a(/F is the corresponding
strain, respectively. The stress components are related to a stress function ¢(r, 6) in the form of

o =r'¢ 417 =4¢", ou=—(""9), )
where () and () denote the derivatives of ¢(r, 0) with respect to the near tip coordinates r, 0 respectively, see
Fig. 1.

In addition, the compatibility equation is
r (reg)" +rte, — r'E — 2r2(eyg) = 0. (3)

Generally, the stress function is assumed in a separable form and the higher order asymptotic form of
¢(r,0) is in the form of

O(r,0) = K12, (0) + Kot by (0) + - -- @

with K, K5, Si, and S, as unknown constants to be determined by boundary conditions. With the help of
Egs. (1)-(4), the higher-order-term solutions were obtained (Li and Wang, 1986; Xia et al., 1993), but the
effective stress o, in their solutions was in the form of

e = [(3/4) (0, — ap)’ + 3039}%. (5)

However, the definition of effective stress o, 1is,

1

oo = (1/V2) - [(a, — 0+ (o — ) + (0. — ) + 6030}? (6)

It is noted that Eq. (5) is derived from Eq. (6) under the full plastic assumption of ¢, = 0.5(c, + a4). For
plane strain problems (¢, = 0), Eq. (1) gives

Fig. 1. Crack-tip coordinate system.
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Eq. (7) describes the dependence between o. and o., and gives the definition of v.p, which is referred as the
elastic—plastic Poisson’s ratio in this paper. From Egs. (6) and (7), it is seen that ¢, and ¢, are dependent on
each other. Because of this dependence, o. cannot be independently expressed by the in-plan stress com-
ponents, and thus solving the crack-tip asymptotic fields cannot be carried on. This problem was fixed by
assuming ve, to be 0.5 (Li and Wang, 1986; Xia et al., 1993). However, the assumption of o, = 0.5(g, + dy)
holds true only when the ratio of plastic to elastic deformation is infinite, i.e. &,/s. — o0, and in real elastic—
plastic problems, the value of ¢./(o, + 0y) changes from v to 0.5 (Guo, 1993). The change of v, has a
considerable effect on the stress/stain fields in the sensitive region ahead of a crack tip. Therefore, further
studies on this subject are expected.

Many multi-term solutions were studied (O’Dowd and Shih, 1991a,b; Sharma and Aravas, 1991; Xia et
al., 1993; Yang et al., 1993, etc.). Some of these studies reported that only the third or higher order terms of
the solutions were affected by elastic deformation and therefore the effect of elasticity could be omitted. For
example, in the solution presented by Sharma and Aravas (1991), the strain function was expressed as

e(r,0)/oey = e (0) + z”("’l)*’s(l)(H) +r7e00) + -, (8)

where s, ¢ is the power of stress function and s > ¢; n is the hardening exponent. The first two terms rep-
resents the plastic strain where s = —1/(n+ 1) and ¢ < (n — 2)/(n + 1). The third term represents the elastic
strain. Therefore, it was concluded that the effects of elasticity enter the solution in the higher order terms of
the asymptotic solutions. However, the above result was derived by comparing only the powers of the radial
coordinate » without considering the angular coordinate 6. The typical angular distribution of the plastic
strains &°(0) around a crack reported by Hutchinson (1968b) showed that ¢P(0) approaches zero as 0 — 0°.
The fact is that 7", "D+ > ¥ as r — 0, but both £ (0) and &V (0) of Eq. (8) approach zero while £ (0)
approach a finite value as 0 — 0° (see Tian and Wen, 2001). Therefore, it cannot be concluded that the third
elastic term is always less than the first two plastic terms on the ligament. In other words, whether the first
two plastic terms are the dominant ones depends on the other coordinate 6. This problem is also related to
the assumption of the separable stress function of the common asymptotic analysis. Yang et al. (1993) also
obtained multi-term solutions. In the common asymptotic analysis for a series expansion of r, as r ap-
proaches zero, the coefficients of each term of different order of » was taken to be zero. The equation of
a) =) = 0.5(5") 4 &) of the first term was obtained for plane strain problems (¢. = 0). This equation
is just the incompressible one and so the first term is still the HRR singularity. The incompressible or full
plastic result is related to the assumption that stress function is separable in » and 6, which is a far more
complicated problem and needs further study.

Sharma and Aravas (1991) also remarked that the dominant region of the two-term stress ahead of the
crack is smaller than that in the angular region 60° < 0 < 180°, which raises the question as to whether the
two-term expansion can provide an accurate description of the stress field in the region ahead of a crack.
Therefore, it is expected to get the more reasonable crack tip fields in the region 0° < 6 < 60° where the
fracture process takes place.

An alternative approach of solving the crack-tip fields in a bi-linear elastic—plastic material was pre-
sented by Yang and Chao (1992) as well as Chao and Yang (1992) in which the constitutive relation was

1+v 1—2v 3/1 1 L
8,']:TSU-’-TO'M&U—FE(E—,—E)(I—O'el>S,'j. (9)
p

They still employed the assumption of 6 = g./6y — oo and so the factor of (1 —a,') in Eq. (9) vanished.
This implies that the ratio of plastic to elastic deformation is infinite, i.e. &,/¢. — co. The present study
shows that the values of the normalized equivalent stress o,/ ahead of a crack tip are not very large and
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the near-tip field is very sensitive to the values of ¢./0y. Therefore, the assumption of 6. = g./69 — o0 is
not reasonable.

The full plastic models are consciously or unconsciously employed in the analysis of elastic—plastic
fracture as reviewed above. However, the negligence of the above-mentioned elastic effect can be one of the
considerable reasons responsible for the invalidation of the J-integral based criterion. Little studies of
elastic effects on elastic—plastic fracture processes have been reported although many multi-term solutions
were obtained. The current study presents an alternative attempt to consider the elastic effect. Some merits
of the elastic—plastic Poisson’s ratio v, are discussed for plane-strain problems. The patterns of near-tip
energy distributions under different constraints are presented. The present study provides a new insight into
the role of elasticity in elastic—plastic fracture.

2. An analogy solution for elastic—plastic near-tip fields
2.1. The analogy between elastic—plastic and linear elastic problems

To investigate elastic—plastic near-tip fields, an analogy analysis is presented in this section. For the sake
of usefulness, the basic equations of linear elastic crack-tip field are transcribed here. The sum of the first
two terms of the right-hand side of Eq. (1) or Eq. (9) is elastic stress—strain relation is

1+v 1—2v

WETE T 3E

The compatibility equation is Eq. (3) and the linear crack-tip field was obtained by Williams (1957). The

integral J is related to the stress intensity factor K as J = (1 — v*)K}?/E since ¢, = 0, 6, = v(a, + ay) for
mode-I plane strain crack. The linear elastic crack-tip stress field can be written in form of

o, G| EJ : G. O cos? 0 —sinfcos 6
[Ggr O'():| B [271(1 —vz)r] {&or 60} + {—sin@cos@ sin® 0 T (11a)

O-kkéij- (10)

The second term of the right-hand side of Eq. (11a) denotes the so-called T-stress. It has a finite or bounded
value and can be regarded as the stress acting parallel to the crack flanks (Rice, 1974). In addition, the
0-variations were

N 1 0 3
a,(0) = 3 (5 c08 3 — COSEQ),

. 1 0 3
60(0)—Z<3cos§+cos§0>, (11b)

N 1/ .0 .3
G,0(0) =7 (smi—i— smiﬂ).

To demonstrate the analogy method, the bi-linear elastic—plastic model is studied. Fig. 2 shows the uniaxial
stress—strain relation where E, is the tangent modulus of elastic—plastic stress—strain curve (i.e., the less

Fig. 2. Elastic—plastic stress—strain relation.
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steep line as o > gy) and gy is the initial yield stress. In the multi-axial stress state, it is in the form of Eq. (9)
and can be rewritten as

I+v+41 1—2v
&j = I Sy + 3E O 0i (12a)

x:%(%q)a—ael). (12b)

By introducing two elastic—plastic parameters v, E., defined as

L+vey, TH+v+i  1-2v, 1-2v

13
Ep E 3E 3E (13)
we rearrange Eq. (12a) as
1+ v 1 —2v,
Sij = Eep pSi]‘ + 3Eep P O-kkéij' (14)

It is clearly seen that the form of Eq. (14) is the same as that of Eq. (10), but the two elastic constants £ and
v in Eq. (10) are replaced by the two elastic—plastic variables E., and v, in Eq. (14). These two parameters
are defined by Eq. (13) and they are the requirements of the analogy between the elastic model and elastic—
plastic model. On the basis of Egs. (12b) and (13), we obtain the following expressions,

E E
14213 1+(m—-1)(1—5,) (15)

€

Eep =

v v+ (ny—1)(1—3.")/2
' T T 223 1+ (n,— (1 -5

with n, = E/E, for short. In addition, the following equations are hold,

A= 3(Vep — I —2vg,
PRI e } {17

(16)

Because of the important role in elastic—plastic crack-tip fields to be demonstrated in the following sections,
Vep 1s known as elastic—plastic Poisson’s ratio.

2.2. The role of v,, in elastic—plastic plane strain problems

Under the plane strain condition (e, = 0), Eq. (14) leads to
Vep = 0./ (0, + 09). (18)

Obviously, ve, coincides with the constraint parameter ¢./(g, + 05) under the plane strain condition. It is
noted that v, was introduced and defined by Eq. (13). From Eq. (16), we obtain

Vep =V, a8 Ge = 0./09 = 1.0, (19a)
1 1 _

Vep = Vmax = — [V+ =z (np — 1)|, as 6. = 0./a¢9 — 0. (19b)
np 2

Therefore, vep is in the range of v < vep < Vmax. It is clear that v, depends not only on materials constants v
and n,,, but also on the normalized effective stress 6. = o./0,, which is a measure of the degree of plastic
deformation level.
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Fig. 3. The elastic—plastic Poisson’s ratio to effective stress for plane strain problems.

Fig. 3 shows the dependence of v, on a./0y as expressed by Eq. (16) for the cases of v =0.3, n, = E/
E, =5, 20 where the dash lines denote the values of vma. It can be seen that the assumption of ve, = 0.5
means both g./gy and E/E, approach to infinite. It will be seen in the following sections that the change of
Vep OF 0. = 0¢/0y induces a great change of the near-tip fields, especially the near-tip energy distribution.

2.3. Solution procedure of elastic—plastic crack tip fields

On the basis of the analogy between Eqgs. (10) and (14), replacing v and £ in Eq. (11a) with v, and E,
gives

1

2 ~ ~ 2 .
R L I I o
With the help of Eq. (17) and ¢y = v/Eco&, Eq. (20a) can be written as
K& }/:[ 1ty (] )H 4l
oo O 2n(1 — vezp)(l —2v)egy \ rao/J Ggr O
5 .
sy o (20b)

Apparently, the elastic—plastic crack-tip field was analogically obtained. Unfortunately, Eq. (20b) is not the
final elastic—plastic solution, because v., and E, are not material constants but dependent on the stress
components in elastic—plastic cases. This implies that the compatibility equation cannot be exactly satisfied.
However, Eq. (20b) provides an effective way to solve the elastic—plastic fields. Although v, changes from
one point to another in the elastic—plastic fields, it has a certain value at a given point with the dimen-
sionless coordinate (ray//, 0). For a given point (ray/J, 0), the value of v, at this point can be determined
by an iteration procedure. By substituting Eq. (20b) into the expression (6) of the effective stress ., we
obtain a ve, ~ o, relation at the given point. Bearing in mind, we already have another v, ~ o, relation of
Eq. (16) illustrated in Fig. 3 and it can be rewritten as
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Ue(npa Vep) _ (np — 1)(05 — Vep)
a0 C(mp = 1)(0.5 = vep) + Vv —vep (21)

The combination of these two v, ~ g, relations determines the value of v, at the given point. In other
words, the two relations can be illustrated as two curves, and the value of v, at the intersecting point of
these two curves is the real value of v, at the given point (ray/J, §). As the above-mentioned procedure is
carried out repeatedly from one point to another, the values of v, are determined at all points around the
crack-tip. With the determined value of v, at a given point, the stress components at the given point are
given by Eq. (20b). Consequently, the elastic—plastic solutions for crack-tip fields are obtained. Some
solutions for specific cases of consideration are discussed in the following sections.

3. Stress and strain crack-tip fields
3.1. Stress and strain distributions under high constraint of T /g, = 0
When T = T/oy = 0, the second term of Eq. (20b) vanishes, and the effective stress is obtained by

substituting Eq. (18), and the first term (the so-called high constraint crack tip field) of Eq. (20b) into (6),
namely,

2 1
Ge(l"O'o/J, 0, Vep) (] _ zvep) 1 2 ) Lo 9
= . 1 —2v, 3 v v 2

% BT =) =2 e )| (17 2 ) 35" 3] cos3 22)

By using the above-mentioned procedure, the value of v, can be determined by Eqgs. (21) and (22). The
values of v, at some points of interest are determined, including points at roy/J =2,5 and
6 =0°,10°...,180° (angular distribution) as well as points at § = 0°, rgo/J = 1.0,1.5,...,6.0 (ligament
distribution, see Section 3.2). The results for two different materials (v = 0.3, ¢o = 0.002, n, = E/E, = 5, 20)
are showed in Fig. 4.

v

ep
Ik gelelelelelelelelelelelelelelelelelell
PU-CC V-V
045 | A A
P RN
( ~ "\ \
04 /A7 |0 HRR X
A1
o E/E  ro /J| W
A, P
A'I 5 2 |
035 °F —— 20 2 "
---- 5 5
--A- 20 5
0.3 ‘ ‘ ‘ £
0 30 60 90 120 150 180
o

Fig. 4. Angular distribution of elastic-plastic Poisson’s ratio for I'/oy =0, E/E, = 5, 20.
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It is found that the value of v, in the forward sector (|0 < 30°, 1 < rao/J < 5) is obviously smaller than
0.5, it is noted that o./(0, + 09) = 0.5 in the HRR solution.

The stress components at each point (roy/J, 0) can be obtained by substituting v, at the point into Eq.
(20b) with T = T /g, = 0. With the help of Egs. (9), (12) and (17), the elastic and plastic strain components
are expressed as
e 14w 1—2v

Sy +

% = TF T T3g

O-kkéija (233,)

A 3(vep — V) Sy
P _Z9. =_® U
T E T 12y E

With Eq. (18) and oy, = 36 = (1 + vep) (0, + 09), substituting Eq. (20b) with 7 = T/, = 0 into Eqgs. (23a)
and (23b) leads to

& (1 —2vep) 1 .
by = g [Zn(l =) (1 =2v)e . (rad])] £(0) (242)

with the functions of &;(0) for total strain, and &;(0), &(0) for elastic, plastic strain,

(23b)

e LY 0 3 0
&0) = 2 <5005200520> —2v(1 +vep)cos§,
I 0 3 0
&(0) = A (3 cos§+cos§€)> —2v(1 +vep)cos§, (24b)
e l+v/ .0 .3
£5,(0) = y) (smi + smE@).
and
- 3(vep —v) [1 0 3 2 0
() =P " |_ Z_ . _z z
er(0) . {4 (5(:052 c0520> 3)(1—|—vep)cos2},
- 3(vep—v) [1 0 3 2 0
p(g) — “\Vep - 7 R e
&p(0) = T [4 (3cosz+00520> 3(l—i—vep)cosz}, (24c)
- 3(vep—v) 1 .0 .3
P (0) = 2L . = =0).
£y(0) (1—2vy) 4 (51n2+s1n2 >

The strain components for two different materials (v = 0.3, ¢, = 0.002, E/E, = 5, 20) are determined. The
angular distribution of elastic strain &; and total strain ¢, at 7o /J = 2 are showed in Fig. 5. It is clearly seen
that the elastic strain is nearly the dominant term in the forward sector (|0] < 30°). It is noted that the
strains on the ligament in the HRR solution are zero (see Hutchinson, 1968b).

3.2. Elastic—plastic Poisson’s ratio for various T-stress values

The distribution of the elastic—plastic Poisson’s ratio on the ligament for various values of T-stress
(different constrains) is of interest in this section. On the ligament (6 = 0°), Eq. (20b) leads to

[;9: O‘;’:}/UO - [h(l (1‘)5:)2(‘13?) 2v)30' (rG;/J)r[(l) (1)] + [OT 8} (25)

Under the plane strain condition, with Eq. (18), substituting (25) into (6) gives
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Fig. 5. Angular distributions of elastic, plastic and total strains for 7/ay = 0.

1

6o = Ge/on = (1 = vep + )T + (1 = 20 Ty + (1 = 20p)°63| (26a)
with &, as
%
o (1= 2vep) 1
7T (=) (1= 2e \reofd )| (260)

Similarly, Egs. (21) and (26) leads to

_ _ } —1)(0.5 — vep)
1 = vy + V)T (1 = 20T + (1 — 20| = — < . 2
(1= v )T 4+ (1= 200) T+ (1 = D)3 | = e (27a)

Substituting (26b) into (27a) gives the dependence of v, on T = T'/a,. It can be expressed as
Vep = Vep(T'/ 00,700 /T, v, €0, 11p). (27b)

For example, two hardening materials with v=0.3, n, =E/E, =5, ¢ = 6o/E =0.002, and v=0.3,
n, =E/E, =20, & = go/E = 0.0028 are discussed. The later is similar to HY80 steel (n =9 for power
hardening material, £ = 200 MPa, gy = 560 MPa, v = 0.3, from Hancock and Cowling, 1980). Based on
these material data, the relation ve, = vep(7'/00,700/J, v, €0, 1) is obtained by using Eqs. (27a) and (26b).
The ligament distributions of v, for different values of T-stress are plotted in Fig. 6.

It is clearly seen that the all values of v,, are lower than 0.5 and increase as the “constraint” decreases. In
addition, it is noted that the value of ¢,, /0. depends on the value of v,,, and it is generally overestimated by
assuming ve, = 0.5. As a constraint parameter, v, is directly in the expressions of the crack tip field in
bi-linear materials, and can directly represent the ratio of elastic to plastic deformation.



960 C. Tian, Y. Gao | International Journal of Solids and Structures 42 (2005) 951-970

Ve Ve
05 0.5
T/o,
045 | 0
----08
0.4
- --12
035 | -t -6
E/Ep:20 --e -2
0.3 : : ! L 03 L L .
1 2 3 4 5 6 1 2 3 4 5 6
ro,/J ro,/J

Fig. 6. Ligament distribution of elastic—plastic Poisson’s ratio of different T-stress values for E/E, = 5, 20.

4. Crack-tip energy fields in bi-linear materials
4.1. The energy distributions for high constraints of T /gy =0

Since the elastic—plastic strain energy fields is significantly important in terms of the construction of a
physically reasonable failure criterion, we discuss the case under high constraint (T = T /oy = 0) in this
section. With the elastic, plastic strain &, sf-} of Eq. (23a) and (23b), the densities of elastic and plastic strain
energy can be deduced by the definition

1+ 3(1-2
We:/a,-]-d.gfj: 3Eva§+ ( 75 V) a2, (28a)

A Vep — VG2
Wy — / T3 (28b)

The stresses of singularity term (or the high constraint fields) are determined by (20b) with 7 = T/ = 0.
With the help of Eq. (18), by substituting the stresses into (28), we obtain the energy densities as

[& Wp ] _ (1 — 2vep)J #:(0), w,(0), (29a)

oot0 Gogo | 2m(1 —v2)(1 — 2v)6080r[

where the functions of w.(0),W,(0) are in the form of

0 0
We(0) = % [(1 F)(1 = 2ve)* 42 (1 = 2v)(1 4 vep)* + 3(1 + v) sin’ 3 cos® =,

2
— 0 0
wy(0) = lvej 2vv [(1 — 2vp)” + 3sin’ 5 cos’ ok
ep

(29b)

The angular distributions (rag/J = 2) of the ratio of elastic to total strain energy density w./(w. + w,) for
two materials given in Section 3.2 are presented in Fig. 7. It is clearly showed that the elastic strain energy is
the dominant term and therefore the omission of elasticity is not physically applicable in the forward sector
(0 < 30°).
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Fig. 7. Angular distribution of the ratio of elastic to total strain energy density for 7/ay = 0, E/E, =5, 20.

4.2. Elastic and plastic energy distributions for various T-stress values

The ligament (6 = 0) field for various values of 7 /gy (the different constrains) is the topic of this section.
The energy density can also be deduced by the definition. The combination of Egs. (18), (25), (26), (28a)
and (28b) leads to the expressions of the elastic energy density w, and plastic energy density w,, and they are
written in the following dimensionless form,

1+ = — 3(1=2v) [1 1

e =— v [(1 —vep+v§p)T2+(1 —2) T3+ (1 —zvep)zaﬂ +%- [g- (1+v,) 26, +T)| ,

(30a)

By =2V [(1 —Vep V)T + (1= 2v) T + (1 — 2vep)za—5] (30b)
1 —2ve, P

By substituting v, (Fig. 6 or Eq. (27)) into Egs. (30a) and (30b), the energy distributions can be calculated.
The ligament distributions of the elastic and plastic strain energy densities of various values of 7'/oy for
E/E, =5, 20 are plotted in Figs. 8 and 9. It is seen that w, values of E/E, = 5 keeps very low, while the w,
curves of E/E, = 20 increase sharply after T/a, reaches value about 7'/ay = —1.0, which is accompanied
with decreasing of elastic energy density w.. Again, it is not acceptable ignoring the elastic effects on the
ligament. Together with Fig. 7, it is clearly shows that the elastic strain energy is the dominant term in the
forward sector (6] < 30°) in the annulus of 1 < rgy/J < 6 around a crack tip while the plastic strain energy
is dominant term in the area out of the forward sector.

4.3. Total energy distributions for various T-stress values

The distribution of total strain energy density on the ligament is useful in aiding the understanding of
fracture processes. The sum of Egs. (30a) and (30b) gives the dimensionless form of total strain energy
density, and it can be simplified as
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Fig. 8. Ligament distribution of elastic, plastic energy density of different 7-stress values for E/E, = 5.
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Fig. 9. Ligament distribution of elastic, plastic energy density of different T-stress values for E/E, = 20.

Wep = (wep)l + (wep)u (313)

with (Wep); and (Wep )y, as

o (T =2v)
(Fep)y = 21(1 — vgp) 00807

(31b)

u+%m—mm—m@J%+O—Mﬂ—%Lz
21(1 — vep) Goor 2(1 —2vep)

(Wep)yy = (31c)
Substituting ve, = vep(7/ 00,700/ J, v, &, np) for E/E, = 20 (Fig. 6) into (31b) and (31c) gives the distribution
of (Wep)y» (Wep)y; as shown in Fig. 10 where the energy terms are plotted again the positions on ligament
under various constraints.
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Fig. 10. Ligament distribution of total energy density of different T-stress values for E/E, = 20.

It is found that (w.,); decreases but (W), increases as the 7/g, decrease. In addition, (Wep);; keeps a
very low value until 7T/o, reach a certain value (about 7/oy = —1.0), then it increases sharply when
T/oyp < —1.0. It should be noted that (iw,);; can becomes negative as T'/gy > —1.0, but the total energy is
always positive. It is also seen that a factor of 1/(1 — 2v,,) is included in Eqgs. (31c) and (30b). Therefore,
(Wep)yy and w,, increase rapidly as ve, — 0.5. This phenomenon can also be found from Fig. 6 compared with
Figs. 9 and 10.

5. Finite element analysis

For the validation and application of the bi-linear crack-tip fields presented above, this section examines
the same crack-tip fields by using finite element method (FEM). Analyses on the elastic—plastic energy
distributions around a crack are addressed again numerically. And the materials data used here are the
same as the analytical analysis above.

As shown in Fig. 11, two kinds of typical specimens, three-point bend bar (TPB) and centre-cracked
panel (CCP) are studied. The ratio of the crack length over the specimen width, a/W, is taken as a/W = 0.5
in the above-mentioned two cases.

Fig. 12 illustrates the finite element meshes, where the region near the crack-tip is modelled with refined
meshes, and the radial length of the element close to crack tip is 0.001 of the ligament size. In this FEM
analysis, ANSYS Version 5.6.2 (ANSYS 5.6.2, 2000) is employed, the element type is chosen as eight-node
iso-parameter element. About 500 increments are applied to cover the range from small-scale yielding to the
deep yielding.

TPB cCP
\vd . Avd
= - = g —
H -~ ] —
< 160 n < 160, >
-

Fig. 11. Two typical specimens for FEM analyses.
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The upper half The crack tip detail

Fig. 12. Finite element mesh.

5.1. Distributions of elastic—plastic Poisson’s ratio v, around crack tip

The angular distributions at oy /J = 2 of v, of high constraint specimen (TPB) for E/E, = 5, 20 and the
ligament distributions of v, of the two typical specimens (TPB and CCP) for E/E, = 20 are presented in
Fig. 13.

From the analytical results of Figs. 4 and 6 as well as the FEM results of Fig. 13, it is showed that the
curves of FEM results of TPB are similar to those of the bi-linear field of 7 = 0. From high to low con-
straints, the FEM results of two typical specimens are similar to those given by the bi-linear field from high
T-stress values to low. Both of them shows that v, is considerably lower than 0.5 in the forward sector
|0] < 30°.

Figs. 4, 6 and 13 also show that the v, values change from 0.35 to 0.48 in the range of 1 < rg,/J < 6 on
the ligament. The values of o./ay in this range is not very large (generally less than 3.0, see Fig. 3), and v, is
very sensitive to g./agy in this range as showed in Fig. 3. Therefore, both assumptions of 6. = g./gy — 00
and a,/(0, + g9) = 0.5 employed in literature reviewed previously are not applicable.

5.2. Energy distribution around crack tip

The angular distributions (ray/J = 2) of the ratio of elastic to total energy density obtained by FEM
analyses of E/E, =5, 20 for high constraint specimen (TPB) are illustrated in Fig. 14. The ligament

Vep Vep
0.5 | 0.5 FEM  bo,/J
o
R -A L
BEEE = - 35
045 | 0.45 | 8-a.4
----96 (IPB
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04 04 | - -+ =37
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4 |32 0 o R > - O - 369
035 [ |—X—37 } P \ 035 | T~ - e 99 }CCP
392
- =79 }E/E*’_S - =45
0.3 W 0.3
0 30 60 90 120 150 180 1 2 3 4 5 6
(@) e (b) ro,/J

Fig. 13. Distribution of elastic—plastic Poisson’s ratio around a crack tip. (a) Angular distribution for E/E, = 5, 20 and (a) ligament
distribution for E/E, = 20.
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Fig. 15. Ligament distribution of elastic, plastic energy density for E/E, = 20.

distributions of the elastic, plastic strain energy densities given by the FEM analyses of E/E, = 20 for the
two typical specimens are presented in Fig. 15.

As compared with the analytical results presented in Figs. 7 and 9 in Section 4, it is seen that the
considerable elastic energy develops on the ligament while little plastic deformation occurs for both the
FEM results of TPB specimen and the bi-linear ligament field until 7//o, reaches a certain value (about
T /oy = —1.0 in Fig. 9). The decrease of the constraint means the decrease of elastic energy density w, and
the increase of plastic energy density w, on the ligament.

Again, it is clearly seen that, from high to low constraints, the FEM results of the two typical specimens
are similar to the bi-linear ligament field with the T-stress varying from a high to low values (see Figs. 7 and
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9). Consequently, the FEM results show that the bi-linear elastic—plastic field with various T-stress values
can properly describe different kinds of crack tip fields under various constraints for different specimens.

6. The role of elastic strain energy and fracture criterion

Tian and Wen (2001) reported that the distribution of the energy density is non-uniform in the annulus
of 1 <ray/J < 6 around a crack tip. The FEM results presented previously for various crack geometries
indicate that the non-uniform distribution of strain energy is a basic feature for all kinds of crack geom-
etries. The high constraint leads to that the high elastic volume energy is accumulated in the forward sector
(0° < 0 < 30°), while large plastic work occur in the region out of the forward sector. This phenomenon
was also found in the HRR field (Tian and Wen, 2001). Therefore, it is true that the plastic dissipation
dominates the crack-tip zone when the annulus is considered as a whole. The pattern of the non-uniform
distributions of strain energy is dependent on the crack tip constraint, while the constraint is on the
specimen geometry, the hardening exponent, and the load level ba,/J. As constrains decreases, the elastic
part in the forward sector decreases while the plastic part increases, but in general they are of same order on
the ligament.

Yang and Chao (1992) reported that the elastic portion J¢ is 12% of the total J in plane strain conditions.
Furthermore, the fact that J. depends on the triaxility of ¢,,/0. implies that the elastic energy is of
importance to the fracture process. The one-parameter fracture criterion of J-integral is based on the HRR
field, which was derived from the full plastic model of the deformation theory (or non-linear elasticity by
assuming a./(o, + g4) = 0.5 and omitting the linear elastic portion). In the HRR field, there is no defor-
mation on the ligament ahead of a crack tip (Tian and Wen, 2001). The one-parameter J-integral criterion
is only related to J? with no relation to the elastic energy. Particularly, it is not related to the deformation
induced by hydrostatic stress because of the assumption of ¢./(o, + g4) = 0.5. However, the measured J
values from testing specimens include both J¢ and JP. As the above-mentioned, the patterns of the non-
uniform energy distributions disappear gradually with the decreasing of the constraint v.,. For high con-
straint specimens (such as TPB), as the load increases (i.e., as ba,/J decreases) the ratio of elastic to plastic
deformation (i.e. vep) keeps low steady curves (see Fig. 13(b)). Therefore, the ratio of J¢ to J® keeps high and
this leads to low testing values of J.. By contrast, for low constraint specimens (such as CCP), the curves of
Vep 18 high (see Fig. 13(b)) and the ratio of J¢ to J? decreases. As a result, it leads to the higher testing values
of J.. These phenomena imply that fracture will not occur until the elastic energy is accumulated to a critical
value ahead of the crack tip.

By comprising Egs. (30a), (30b) with (31b), (31c¢) or Fig. 9 with Fig. 10, the following approximate
relations are found,

(Wep)y = We;  (Wep)yp = Wp- (32)

These approximate relations reveal the physical meanings of the above-mentioned two terms. More
importantly, if the ‘fracture’ is assumed to be mainly related to the release of elastic strain energy (since the
plastic strain energy dissipated and cannot be released), a fracture criterion can be proposed on the basis of
Eq. (31b), that is
mJ = Const. (33)
L (T=vep) ¢

Specifically, in linear elastic cases, ve, = v and Ji. = (1 —v*)K2/E, Eq. (33) becomes
[(1 = 2vgp) ] (1—-2v) (I=2v)(1+v)

m.] = (1 — v) JIC = E KIZC = Const. (34)
L ep ENe
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Since E, v and J. are material constants in linear elastic cases, the critical value of J for elastic—plastic
problem is determined as,

(=) (1 —2v)
4= [asa) T )

For example, in the typical case of roy/J = 1, combining Egs. (26b), (27a) and (35) leads to an analytical
relation between J, and T-stress,

(1= 2v)° }i{ (- 1DO5—vg) ' (1-2v)
2n(1 —v2)(1 = 2v)e (mp — 1)(0.5 — vep) + v — vep 2r(1 —v2)(1 = 2v)e’
1-2v) 1 }1

ool =29 1
=1 P T—) Ue/)

(1= vep +v§p)<(r_7;>2 +

ﬂ_()_

(36a)
and this relation can be expressed as
Jc/JIc :f(T/O'(),V,S(),np). (36b)

For the case with n, = E/E, = 20, & = 0.0028 and v = 0.3 (similar to the materials of Hancock and
Cowling, 1980, see Section 3.2), the relation between J, and T-stress is plotted in Fig. 16.
From Fig. 16 or Eq. (36), the ratio of J. for T = —2.0 over that for 7 = 0 is given as

(JC)T:—2.O/(JC)T:0 = [(JC)T:—Z.O/JIC]/[(JC)T:O/JIC] =6.50/1.805 = 3.60. (37)

At the same time, the ratio of J, for CCP over that for TPB is also obtained based on the fracture data of
HYS8O0 steel (Hancock and Cowling, 1980),

(Je)pp/ (Je)ccp = 580.8/190.4 Mpa = 3.05. (38)

The fact that these two values in Egs. (37) and (38) are nearly same indicates that the theoretical results is in
good agreement with the test results although it is a rough estimation. It is also noted that the FEM results
of TPB and CCP are similar to those of the bi-linear field of 7 =0 and 7/gy = —2.0 respectively as dis-
cussed in Section 5.

S = N W A O &N 2

2 5 -1 05 0
T/o

0

Fig. 16. An analytical curve between J. and T-stress for E/E, = 20.
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Fig. 16 or Eq. (36) provides a straightforward way to evaluate J. in term of 7-stress for elastic—plastic
fracture. This analytical relation is helpful in fracture experiments. Further careful examination of this
relation by more experimental data for various materials is expected. It is also noted that 7-stress as the
second parameter in the linear elastic fracture (Williams, 1957) has been generalized to be used in the
elastic—plastic fracture (Betegon and Hancock, 1991). However, this kind of K — T or J — T approach has
limited application in the elastic—plastic region because it was based on elasticity theory. In the present
study, the relation of J, and T-stress given by Fig. 16 has no this limitation because it is based on the bi-
linear elastic—plastic ligament field.

Meanwhile, Eq. (36a) gives the dependence of v, on T = T'/0, namely,

Vep = Vep(T'/ 00, V, €0, 1p). (39)

The relation between v., and T-stress for the same materials is shown in Fig. 17(a).

The relation between J; and v, given by Eq. (35) is shown in Fig. 17(b) where two extreme cases of most
interest are given. The first is the linear elastic case in which v, = vand J, = J,, = (1 — vz)KIzc /E. In elastic—
plastic cases, the J. depends not only on these two elastic material constants J,., v, but also the elastic—
plastic Poisson’s ratio v, ahead of crack tip. The more the plastic deformation takes place near the crack
tip, the larger the factor of 1/(1 — 2v,,) is, and therefore the larger the value of J; is. The second extreme
case is the full plastic problem in which ¢./(g, + 6¢) = ve, — 0.5 and J./Jic — oo, which implies that the
failure criterion may be established by classical strength theory rather than fracture theory.

7. Summary and conclusion remarks

The present analysis is limited to the annulus of 1 < rgy/J < 6, in which it is assumed that there is no
microcrack phenomenon and no plastic volume deformation. And the J,-deformation plasticity theory with
bi-linear hardening is used to describe the constitutive behaviour of the material.

A Model-I elastic—plastic crack-tip field is obtained by introducing a new constraint variable of v,,, and
its physical significance for plane strain elastic—plastic problems is addressed. An analogy scheme for
determining the crack-tip fields is proposed. The scheme has been proved to be good approximations al-
though the compatibility equation is not exactly satisfied. We managed to avoid using the separable stress
function of the common asymptotic method and to avoid adding the higher-order terms into the solution.
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The near-tip elastic—plastic energy distributions are studied with an emphasis on the elasticity in the
sensitive region ahead of the crack. Attention is focused on two special cases: one is the first term of
T /oo = 0 for high constraint crack-tip field and the other is the ligament field of different T-stress values for
different constrains. It is concluded that the elastic energy cannot be omitted, although the elastic energy is
smaller than plastic dissipation when crack tip is taken as a whole.

By comparing the bi-linear fields with the results of detailed finite element analyses, the near-tip stress
field as well as the energy field are validated. The FEM analyses indicate that the bi-linear field is physically
reasonable and the bi-linear ligament field in terms of 7-stress can describe different kinds of crack tip fields
under different constraints for different type of specimens. Both the analytical analyses and the FEM results
show that the full plastic assumptions of 6. = g./09 — o0 or a./(0, + ay) = 0.5 are not applicable in the
region ahead of the crack tip.

An analytical relation between J. and T-stress for elastic—plastic fracture is established, which is found in
good agreement with the test results contributed by Hancock and Cowling (1980). This supports the point
that elastic energy in the sensitive region ahead of crack is of importance in fracture process. The analysis of
the near-tip strain energy distribution and the constraint condition provides useful insight into the structure
of crack-tip fields and is helpful in understanding the ductile fracture process as well as in constructing
reasonable failure criteria.
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